📘
TL PhD Comprehensive Exam
  • Introduction
  • Tasklist
  • 1. Basics
    • 1.1 Basic Biology Review
    • 1.2 Basic Genetics Review
    • 1.3 Light & Photosynthesis
  • 2. Coral Biology
    • 2.1 Basic Coral Biology
      • 2.1a Food Webs
    • 2.2 Reef Structure
    • 2.3 Growth & Reproduction
    • 2.4 Morphology
    • 2.5 Physiology
    • 2.6 Mixotrophy & Energy
    • 2.7 Symbiosis
    • 2.8 Reef Mortality
      • 2.8a Conservation
  • 3. Ecology & Evolution
    • 3.1 Evolution & Plasticity
    • 3.2 General Ecology
    • 3.3 Species
    • 3.4 Cryptic Species
  • 4. Isotopes
    • 4.1 Isotope Basics
      • 4.1a Instrumentation & methodology
      • 4.1b Environmental O & H
      • 4.1c Environmental C and N
      • 4.1d Organismal Isotopes
    • 4.2 Fractionation in Corals
    • 4.3 Trophic Niche Analysis
    • 4.4 CSIA
      • 4.4a C: Essential vs. Nonessential
      • 4.4b N: Trophic vs. Source
  • 5. Other
    • 5.1 Science & Society
    • 5.2 Stats
  • 6. Summary & Resources
    • 6.1 Glossary
    • 6.2 Resources
    • 6.3 Questions From Exam
    • 6.4 Recommendations & Reflections
Powered by GitBook
On this page
  1. 2. Coral Biology

2.5 Physiology

Last updated 1 year ago

Chlorophyls

Jeffery & Humphrey 1975

Lipids

  • Methodology - Folch, Lees, and Stanley 1957, Grottoli, Rodrigues, Juarez 2004

  • See

  • Long term energy reserves (Grottoli et al. 2004)

Carbohydrates

  • Short term energy reserves

Proteins

  • short term energy reserves

Antioxidants

  • Too much light causes oxidative stress and the creation of Reactive oxygen species (ROS)

  • Antioxidants neutrelize ROS and are therefore photoprotective (Roth 2014)

  • Methods & background (Deschaseaux et al. 2013)

  • commonly used as a stress proxy via ROS quenching (Tagliafico et al. 2022)

Calcification

  • Calcium is abundant in sea water

  • Step 1. Concentrate calcium ions in tissues

  • Step 2. Sequester CO2 (from environment or diet) to make bicarbonate

    • HO^- + CO2 <--> HCO3^-

  • Step 3. combine calcium ions and bicarbonate to make calcium bicarbonate

    • Ca^2+ + 2HCO3^2- <--> Ca(HCO3)2

  • Step 4. break calcium bicarbonate into calcium carbonate and carbonic acid

    • Ca(HCO3)2 <--> CaCO3 + H2CO3

Depth Changes

chl

  • less -> more chl per symbiont (Falkowski and Dubinsky 1981)

  • No change with depth (Nir et al. 2011)

  • low -> high photopigments (Roth 2014)

  • low -> high chl concentrations (Levy et al. 2016)

  • low -> high (Eyal et al 2019)

  • high -> low (Martinez et al. 2020)

Symbiont density

  • less -> more symbionts (Masuda et al. 1993)

  • low -> high symbiont concentrations (Levy et al. 2016)

  • low -> high (Eyal et al 2019)

  • high -> low (Martinez et al. 2020)

Proteins

  • no change (Levy et al. 2016)

  • low -> high (Eyal et al 2019)

  • no change (Gleason 1993)

  • high -> low protein (Martinez et al. 2020)

  • high -> low (Vareschi & Fricke 1986)

  • my work: high -> low

Lipids

  • no effect (Radice et al. 2019)

Antioxidants

  • High -> low production of antioxidants, maybe because of less oxidative stress (Shick etal.,1995)

  • high -> low levels under UVR change (Blanckaert et al. 2021)

  • high -> low levels (Nelson & Altieri 2019)

Carbohydrates

  • none

AFDW / Tissue

  • high -> low tissue biomass (Roth 2014)

  • high -> low (Eyal et al 2019)

Respiration

  • high -> low respiration rates (Roth 2014)

  • No change (Levy et al. 2016)

Calcification

  • high-low calcification rate (Goreau 1959)

  • high -> low (Eyal et al 2019)

Photosynthesis

  • low -> high photosynthetic efficiency

  • low -> net photosynthesis (Levy et al. 2016)

Instrumentation and Methodology